Local Inflammation, Dissemination and Coalescence of Lesions Are Key for the Progression toward Active Tuberculosis: The Bubble Model
نویسندگان
چکیده
The evolution of a tuberculosis (TB) infection toward active disease is driven by a combination of factors mostly related to the host response. The equilibrium between control of the bacillary load and the pathology generated is crucial as regards preventing the growth and proliferation of TB lesions. In addition, some experimental evidence suggests an important role of both local endogenous reinfection and the coalescence of neighboring lesions. Herein we propose a mathematical model that captures the essence of these factors by defining three hypotheses: (i) lesions grow logistically due to the inflammatory reaction; (ii) new lesions can appear as a result of extracellular bacilli or infected macrophages that escape from older lesions; and (iii) lesions can merge when they are close enough. This model was implemented in Matlab to simulate the dynamics of several lesions in a 3D space. It was also fitted to available microscopy data from infected C3HeB/FeJ mice, an animal model of active TB that reacts against Mycobacterium tuberculosis with an exaggerated inflammatory response. The results of the simulations show the dynamics observed experimentally, namely an initial increase in the number of lesions followed by fluctuations, and an exponential increase in the mean area of the lesions. In addition, further analysis of experimental and simulation results show a strong coincidence of the area distributions of lesions at day 21, thereby highlighting the consistency of the model. Three simulation series removing each one of the hypothesis corroborate their essential role in the dynamics observed. These results demonstrate that three local factors, namely an exaggerated inflammatory response, an endogenous reinfection, and a coalescence of lesions, are needed in order to progress toward active TB. The failure of one of these factors stops induction of the disease. This mathematical model may be used as a basis for developing strategies to stop the progression of infection toward disease in human lungs.
منابع مشابه
The key role of exudative lesions and their encapsulation: lessons learned from the pathology of human pulmonary tuberculosis
A review of the pathology of human pulmonary TB cases at different stages of evolution in the pre-antibiotic era suggests that neutrophils play an instrumental role in the progression toward active TB. This progression is determined by the type of lesion generated. Thus, exudative lesions, in which neutrophils are the major cell type, are both triggered by and induce local high bacillary load, ...
متن کاملCFD Hydrodynamics Analysis of Syngas Flow in Slurry Bubble Column
In this paper, a CFD model of syngas flow in slurry bubble column was developed. The model is based on an Eulerian-Eulerian approach and includes three phases: slurry of solid particles suspended in paraffin oil and syngas bubbles. Numerical calculations carried out for catalyst particles, bubble coalescence and breakup included bubble-fluid drag force and interfacial area effects. Also, the ef...
متن کاملEvaluation and Comparison of Body Mass Index and Albumin Level in Patients with Active Tuberculosis and Latent Tuberculosis Infection
Introduction: Limited data are available on the relationship between nutritional status and tuberculosis. The aim of this study was to evaluate and compare the body mass index (BMI) and serum albumin level in patients with active tuberculosis (ATB) and latent tuberculosis (LTB). Materials and Methods: A cross-sectional study was conducted on 17 patients newly diagnosed with pulmonary TB who we...
متن کاملتست پوستی توبرکولین: مقاله مروری
Historically, tuberculosis has been the leading cause of death throughout human history. Tuberculosis infection (TB) causes by Mycobacterium tuberculosis that is very dangerous and can affect any parts of the body, especially lungs. Tuberculosis infection still remains a serious threat to human public health due to its contagious nature, capability to stay latent form in host for indefinite tim...
متن کاملEvaluation of Interleukin17and Interleukin 23 expression in patients with active and latent tuberculosis infection
Objective(s): Tuberculosis is one of the most important infectious diseases with high mortality rates worldwide, especially in developing countries. Interleukin17 (IL-17) is an important acquired immunity cytokine, which is mainly produced by CD4+TH17 cells. It can recruit neutrophils and macrophages to the infected site in the lungs. IL-23 is one of the most important inducers of IL-17. In the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016